OPERATOR'S MANUAL

MINI Lathe CJ0623

WARNIGN

1. Read and understand the entire instruction manual before operating machine
2. Always wear approved safety glasses/face shields while using this machine.
3. Make certain the machine is properly grounded.
4. Before operating the machine, remove tie, rings, watches, other jewelry, and roll up sleeves above the elbows . Remove all loose clothing and confine long hair. Do NOT wear gloves .
5. Keep the floor around the machine clean and free of scrap material , oil and grease.
6. Keep machine guards in place at all times when the machine is in use. If removed for maintenance purposes , use extreme caution and replace the guards immediately .
7. Do NOT over reach. Maintain a balanced stance at all tines so that you do not fall or lean against blades or other moving parts .
8. Make all machine adjustments or maintenance with the machine un plugged from the power source .
9. Use the right tool . Don't force a tool or attachment to do a job which it was not designed for .
10. Replace warning labels if they become obscured or removed .
11. Make certain the motor switch is in the OFF position before connecting the machine to the power supply .
12. Give your work undivided attention .

Looking around, carrying on a conversation ,and "horse-play" are careless acts that can result in serious injury.
13.Keep visitors a safe distance from the work
area.
14.Use recommended accessories , improper accessories may be hazardous.
15.Make a habit of checking to see if keys and adjusting wrenches are removed before turning on the machine.
16.Never attempt any operation or adjustment if the procedure is not understood.
17. Keep fingers away from revolving parts and cutting tools while in operation.
18.Keep belt guard in place and in working order.
19. Never force the cutting action.
20. Do not attempt to adjust or remove tools during operation.
21.Aways keep cutters sharp .
22.Aways use identical replacement parts when servicing .
23.Failure to comply with all of these warnings may cause serious injury .

Table of Contents

Warnings 1
Table of contents 2
Specifications 3
Contents of the Shipping Container 3
Set-up and Preparation for Operation 3
General Description 4-6
Controls 7
Operation 8-13
Adjustments 14-16
Electrical Connections 16
Lubrication Schedule. 17
Parts Lists and Breakdowns 18-42

Specifications:

Capacities:

Swing Over Bed
Swing Over Cross Slide
Distance Between Centers
Headstock:
Hole Through Spindle
Spindle Nose
Taper in Spindle Nose
Spindle Bearing Type
Number of spindle Speeds
Range of Spindle Speeds

Gear Box:

Number of longitudinal Feeds
Range of longitudinal Feeds
Number of inch Threads
Range of inch Threads
Number of Metric Threads
Range of Metric Threads
Lead screw

Compound and carriage

Tool post Type
Maximum Tool Size
Maximum Compound Side
Travel
Maximum Cross Slide Travel
Maximum Carriage Travel
Tailstock:
Tailstock Spindle Travel
Diameter of Tailstock Spindle
Taper in Tailstock Spindle

Miscellaneous:

Steady Rest Capacity
Follow Rest Capacity
Length of Bed
Width of Bed
Height of Bed
Overall Dimensions
Packing Dimensions
Main Motor
Net Weight(approx)
Shipping Weight(approx)

9 "
5-5/16 "
20"

7/8"
1-1/2"×8T.P. 1
MT-3
Tapered Roller
6
120-2160RPM/60HZ

18
0.005"-0.011"

27
8-56T.P. 1
11
$0.5-3.0 \mathrm{~mm}$
9/16"×16 T.P. 1

Single and 4-Way
$1 / 2 " \times 1 / 2$ "
1-7/8"
5"
$16 "$

1-9/16"
1-1/16"
MT-2

1/4"-1-7/8"	$6 \mathrm{~mm}-48 \mathrm{~mm}$
1/4"-1-7/8"	$6 \mathrm{~mm}-48 \mathrm{~mm}$
$34 "$	860 mm
4-1/2"	114 mm
6-3/8"	161 mm
$37-1 / 2$ "L×19-3/4"W×15-3/4"H	$953 \times 502 \times 400 \mathrm{~mm}$
41-3/8"L×22-1/2"W×20"H	$1055 \times 565 \times 575 \mathrm{~mm}$
3/4HP.	550W, 750W
235 lbs	105kg
300lbs	135kg

230mm
135 mm
500/750mm

22 mm
$39 \times 4 \mathrm{~mm}$

100-1800RPM/50HZ
$0.12-0.33 \mathrm{MM}$
$1.5 \times 15 \mathrm{MM}$
$13 \mathrm{~mm} \times 13 \mathrm{~mm}$
48 mm
125 mm
405mm

40 mm
26 mm

135 kg

Contents of the Shipping Container

1 Lathe
1 4"(100mm)Three-Jaw Universal Chuck
1 Four Way Tool Post
1 Operator's Manual

Toolbox Contents:

1 Single Tool Holder
1 4pc.Hex Wrench Set
1 \#1 Cross Point Screwdriver
3 Chuck jaws
1 8/10mm Open End Wrench
1 MT-2Center
1 MT-3Center
1 28T Gear
1 30T Gear
1 36T Gear
1 42T Gear
1 45T Gear
1 80T Gear
1 Chuck Key

Read and understand the entire contents of manual before attempting set-up or operation! Failure to comply may cause serious injury!

Set Up Preparations for Operation

To avoid twisting the bed ,make sure the location to which the bolted is absolutely flat and level. Place a machinist's level on the bed ways and check for level side to side and front to rear. If stand mounted, the stand must be fastened to the floor.

Remove rust protectant from all surfaces with kerosene, diesel oil, or a mild solvent .Do not use gasoline , paint thinner, or lacquer thinner .These will damage painted surfaces. After cleaning, wipe with a clean ,dry cloth and cover all machined surfaces with a light film or machine oil .

General Description

Lathe Bed

The lathe bed is high grade iron. By combining high cheeks with strong cross ribs, a bed of low vibration and rigidity is produced . (Fig.1)The two precision-ground V-slideways, re-enforced by heat hardening and grinding, are the accurate guide for the carriage and tailstock. The main motor is mounted to the rear of the bed.
(Fig.2)

Headstock

The headstock is cast from high grade ,low vibration cast iron. It is bolted to the bed with screws and uses four adjusting screws for alignment. In the head ,the large main spindle is mounted on two precision taper roller bearings. The hollow spindle is a Morse taper NO. 3 with a 7/8" bore.(Fig3)

A quick change of the belt can be accomplished by easing the tension on the idler.(Fig.4)

To protect the machine against accident damage, a clutch is fitted to the reduction pulley at the speed of 130 R.P.M.for 50 HZ , respectively.

Fig. 1

Fig. 2

Fig. 3

Fig. 4

Carriage

The carriage is made from high quality cast iron. The sliding parts are smoothly ground. (Fig.5) They fit the V on the bed without play. The lower sliding parts can be easily and simply adjust. The cross slide is mounted on the carriage and moves on a dove tailed slide .Play in the cross slide may be adjusted with the gibs .

Move the cross slide with it's conveniently positioned handwheel. There is a graduated collar on the handwheel. One graduated mark equals 0.0254 millimeter or 0.001 inches.(Fig.6)

The top slide mounted on the cross slide ,can be rotated 360°. The top slide and the cross slide travel in dove tailed slide and have gibs, adjust nuts , and graduated collars.

A four way tool post is fitted on the top side. The four way tool post can be converted to a single tool holder with pasts enclosed in the tool box.

For accurate facing operations, the carriage can be locked by tightening the hex socket cap screw.(Fig.7)

Apron

The apron is mounted on the bed. A half is fitted to the apron. The half nut gibs can be adjusted from the outside.

The half nut is engaged by the half nut lever. A rack, mounted on the bed, and a pinion operated by handwheel on the carriage allow for quick travel of the apron.(Fig.8)

Fig. 5

Fig. 6

Fig. 7

Fig. 8

Tailstock

The tailstock slides on a V way and can be clamped at spindle with a Morse taper NO. 2 socket and a graduated scale. The spindle can be clamped at any locations with a clamping lever. The spindle is moved with a handwheel at the end of the tailstock.

Leadscrew

The leadscrew is mounted on the front of the machine bed. It is connected to the gear box at the left for automatic feed and is supported by bearing on both ends. The nut and set screw on the right end are designed to take up play on the leadscrew.(Fig.10)

Gear Box

the gear box is made from high quality cast iron and is mounted on the left side of the machine bed.
(Fig.11) The motor drives through nine changeable speeds. Always raise idler to the disengaged position when changing speeds. (A,Fig.12)

Drive and Electrical Equipment

The main drive is provided by a single phase, A.C. motor mounted on the rear of the lathe bed.(B,Fig.12)

The forward-reverse switch(C, Fig.12)is mounted on the top of the electric box. The motor condenser is also contained in this box.

Fig. 9

Fig. 10

Fig. 11

Fig. 12

Controls

1. forward/reverse switch
2. V-Belt Tension Lever
3. Longitudinal Travel Handwheel
4. Half-Nut Lever
5. Cross Slide Handwheel
6. Top Slide Handwheel
7. Longitudinal Lock Screw
8. Tool Post
9. Tailstock Spindle Handwheel
10. Tailstock Spindle Clamping lever
11. Tailstock Locking Screw
12. Tailstock Off-Set Adjustment
13. End Gear Cover Lock Screw
14. Automatic Feed Lever
15. Gear Box Quick Change Lever

Operation

Tool Set-Up

The cutting angle is correct when the cutting edge is in line with the center axis of the work piece. The correct height of the tool can be achieved by comparing the tool point with the point of the center mounted in the tailstock. The correct tool height can be obtained by using shims under the tool.(Fig.13)
When turning ,the tool has a tendency to bend under pressure. For best results, tool overhang should be kept to a minimum of $3 / 8^{\prime \prime}$ or less.

Manual turning

Apron travel, cross travel, and top slide handwheel can be operated for longitudinal or cross feeding. (Fig.14)

Longitudinal Turning with Auto-Feed

Three automatic feeds are available.(Fast=0.011" $(0.33 \mathrm{~mm}) / \mathrm{rev}$., medium $=0.007$ " $(0.19 \mathrm{~mm}) /$ rev., slow $=0.005$ " $(0.12 \mathrm{~mm}) / \mathrm{rev}$.)
These can be set by altering the gear wheel combinations. (See table-Fig.15)

Fig. 13

Fig. 14

Fig. 15

Fig. 16

By moving lever (A.Fig.16) upwards, the automatic feed is engaged.

Taper turning using tailstock off-set

Work to a side angle of 5 can be turned by off-setting the tailstock. The angle depends on the length of the workpiece. (Fig.17)
To off-set the tailstock, loosen locking screw (1,Fig.17) Loosen the front adjusting screw (2) and take up the same amount by tightening the rear adjusting screw(3) until the desired taper has been reached. Tighten the front screw to lock the tailstock in position. The workpiece must be held between to centers and driven by a face plate and driver dog.

After taper turning, the tailstock should be returned to it's original position. The zero position of the tailstock is checked by turning a test piece with constant adjustment until the piece is absolutely true.

Taper Turing by Setting the top Slide

By angling the top slide, tapers may be turned.(Fig.18)

To rotate the top slide:
Loosen two screw (1,Fig.18), top slide can then be rotated. A graduated scale permits accurate adjustment of the top slide. This method can only be used for short tapers.

Turning Between Centers

For turning between centers, it is necessary to remove the chuck from the spindle. Fit the MT-3 center into the spindle nose and the MT-2center into the tailstock. Mount the workpiece fitted with the drive dog between the centers. The drive is driven by a catch plate or face plate.(Fig.19)

Note: always use a small amount of grease on the tailstock center to prevent center tip from overheating.

Fig. 17

Fig. 18

Fig. 19

Inch Thread Cutting

As indicated on the threading charts can be cut using the proper combination of gears and settings. When cutting inch threads, the half nut and threading dial(figures 20 and 21)are used to thread in a conventional manner. The thread dial charts specifies at which point a thread can be entered using the threading dial.

Metric thread cutting

The only difference in metric thread cutting is the half nut must be engaged during the entire threading process. The thread dial cannot be utilized.

Set the machine up for the desired thread pitch (according to the metric threading chart below). Start the machine and engage the half nut. When the tool reaches the part, it will cut the initial threading pass. When the tool reaches the part, it will cut the initial threading pass. When the tool reaches the end of the cut, stop the machine by turning the motor off and at the same time back the tool out of the part so that it clears the thread. Do not disengage the half nut lever. Reverse the motor direction to allow the cutting tool to traverse back to the obtained the desired results.
Example of gear set-up to cut 10 T.P.1.(Fig.22)

1. Loose screw(1,Fig.22)
2. Loose bolt(2). Remove washers(3) and gear (6)
3. Loose bolts(7) to allow movement in the center gear position.
4. Loose nuts(5).Remove washer(4) and gear (8).

Reassemble as follows:

1. install 30 tooth gear in position(6) with bushings, washer, and blot.
2. install 60 tooth gear in position(8)
3. center 127 tooth gear remains in
pace.
4. adjust gear to mesh with upper and lower gear and tighten bolts(7).
Slip clutch
To avoid overloading the drive, a safety slip clutch is fitted in the 130 RPM position. Overloading the drive (rattling noise) means the depth of cut is too deep and should be reduced.

Fig. 20

Fig. 21

Fig. 22

Lathe accessories

Three jaw universal lathe chuck

Using this universal chuck, round, triangular, square, hexagonal, octagonal, and twelve-cornered stock may be clamped.(Fig.23)

Note: new lathe have very tight fitting jaws. This is necessary to ensure accurate clamping and long service life. With replaced opening and closing, the jaws adjust automatically and their operation becomes progressively soother.

Four jaw independent lathe chuck

This special chuck has four independently adjustable chuck jaws. These permit the holding of asymmetrical pieces and enable the accurate set-up of cylindrical pieces.(Fig.24)

Drill chuck(optional)

Use the drill chuck to hold centering drill and twist drills in the tailstock.(Fig.25)

Morse taper arbor(optional)

An arbor is necessary for mounting the drill chuck in the tailstock. It has a NO. 2 Morse taper.(Fig.25)

Live center(optional)

The live center is mounted in ball bearings. Its use is highly recommended for turning at speeding in excess of 600 RPM.(Fig.26)

Fig. 23

Fig. 24

Fig. 25

Fig. 26

Steady Rest

The steady rest serves as a support for shafts on the free tailstock end. For many operations the tailstock can not be used as it obstructs the turning tool, and therefore, must be removed from the machine. The steady rest, which functions has an end support, ensure chatter-free operation. The steady rest is mounted on the bedways and is secured from blow with a locking plate. The sliding fingers require continuous lubrication at the contact points to prevent premature wear.(Fig.27)

Setting the Steady Rest

1. Loosen three hex nuts(1,Fig.28)
2. Loosen knurled screw(3,Fig.28) and open the sliding fingers(2,Fig.28) until the steady rest can be moved with its fingers around the workpiece. Secure the steady rest in position.
3. Tighten knurled screws so that fingers are sung but not tight against the workpiece. Tighten three nuts(1,Fig.28). lubricate the sliding points with machine oil
4.when, after prolonged operation, the jaws show wear, the tips of the fingers may be filed or remilled.

Follow Rest

The follow rest is mounted on the saddle and follows the movement of the turning tool. Only two sliding fingers is taken by the turning tool. The follow rest is mounted rest is used for turning operations on long, slender workpieces. It prevents flexing of the workpiece under pressure from the turning tool. (Fig.29)

Set the fingers snug to the workpiece but not overly tight. Lubricate the fingers during operation to prevent premature wear.

Fig. 27

Fig. 28

Fig. 29

Four way tool post

The four way tool is mounted on the top slide and allows four tools to be clamp handle to rotate any of the four tools to be clamp handle to rotate any of the four tools into position. (Fig.30) Use a minimum of two clamping screws when installing a cutting tool.

Change gear

There are six gears with different number of teeth $(28,30,36,42,45$, and 80). They can be combined for different speeds and required. See chart on headstock.(Fig.31)

Note: The 80 tooth plastic gear is fitted to the machine as a safety gear Replace with a new one if damaged.

Bearing and slide adjustment

Adjusting of the Main spindle bearings
The main spindle bearings are adjusted at the factory. If end play becomes evident after considerable use, the bearings may be adjusted.

Loosen set screw(1,Fig.32) in the slotted nut (2,Fig.32) on the back of the spindle. Tighten slotted nut until all end play is taken up. The spindle should still revolve freely. Caution: excessive tightening or preloading will damage the bearings. Tighten set screw(1,Fig.32)

Adjustment of cross and top slide

Each slide is fitted with a job strip and can be adjusted with screw(1,Fig.33) fitted with lock nuts(2,Fig.33) loose the lock nuts and tighten the set screw until slide moves freely without play. Tighten lock nuts to a retain adjustment.

Adjustment of Compound Feed Screw End Float

To adjust the slide on the saddle :
loosen screw (1,Fig.34)and lock nut(2,Fig.34)

Adjusted the nut until all play has been taken up. Lock the nut(2)with the screw(1)

Cross slide screw

Remove the compound slide (Fig.35) and adjust screw (1,Fig.35) until the backlash between the spindle and the nut is eliminated.

For operator convenience, the compound may be located in two
positions on the cross
slide.

Fig. 32

Fig. 33

Fig. 34

Fig. 35

Compound slide spindle backlash adjustment

Remove two screw holding the spindle bracket in position and unscrew the spindle. Adjust the screw ring(1,Fig.36) until all backlash has been eliminated.

Adjustment of half-nut guide

Loosen two nuts(1,Fig.37) on the right side of the apron and adjust the control screws(2,Fig.37) until both half nuts move freely without play. Tighten both nuts.

Replacing the shear pin in the leadscrew
If the shear pin breaks, it must be replaced.(Fig.38) to knock out the broken pin, the hex head screw must be loosened and the pinion removed. Take off the sleeve and remove the broken pin from the sleeve and the leadscrew. Replace the sleeve, line up the holes, fit the new pin, and assemble.

Fig. 36

Fig. 37

Fig. 38

Replacing the V-Belt

Loosen the screw on the top of the headstock and open the cover.(Fig.39) Remove tension on the V-belt by puling handle toward front of the machine. (Fig.39) Remove belt from the pulleys and replace with new belt. Move lever toward motor to tension belt. (Fig.40) Close cover and secure with screw.

Caution: to avoid breaking the belt, move the tension lever towards the front of the machine before starting.(Fig.41)

Electrical connections

The CJ0623 MINI lathe is rated at 3/4HP, 1HP,60HZ,115V(or 550W , 750W, 50HZ, 230V) only. Confirm the power at the location is the same as the rating of the late before plugging the lathe in. Do not attempt to turn this lathe on any other tape of power.

The lathe must be properly grounded. The lathe is designed to be used with an outlet as in Fig.42, if this type of outlet is not readily available, an adapter(as in Fig.43) may be used temporarily until a qualified electrician can install a grounded outlet. Make sure the grounding tab on the adapter

Fig. 42
is secured to the cover plate screw.

Fig. 39

Fig.. 40

Fig. 41

Fig. 43

Lubrication schedule

Note: lubricate all locations daily.

Grease refers to \#2 tube grease.

Oil refers to 20W machine oil.
1.1-2 squirts oil into oil ball on gear hub.
2. Grease teeth of feed and change gears.

1-2 squirts oil into oil ball on gear hub.
3. Lightly coat gear teeth with oil.

1-2squirts oil into oil ball on gear hub.
4. Wipe bedways clean and coat lightly with oil.
5. Grease rack over complete length.
6. Clean and oil lead screw over complete length.
7. 1-2 squirts oil into oil ball on leadscrew bracket.
8. Lightly coat screw and guides of top slide with oil.
9. 1-2 squirts oil into oil ball on top of tailstock body.
10. 1-2 squirts oil into oil ball on top of carriage.
11. 1-2 squirts oil into four oil reservoirs on gear box.
12. 1-2 squirts oil into hub for feed lever.
13. 1-2 squirts oil into two oil balls on apron front.

Headstock Assembly

Parts List For The CJ0623 MINI Lathe
 Pleases Order By Index Only

Headstock Assembly

Index

NO.
Description
Size
Qty.
1..Headstock Casting 1
2. Flange Joint 1
3. Spindle 1
4. Key 1
5 gasket 2
6. Ball Bearing 2
7. Cover 1
8. .Spacing Ring 1
9. gear 40T 1
10 Pulley 1
11 Bushing 1
12 Set screw. M4X6 4
13 .Nut M28 1
14. Set screw M4X10 4
15 Shaft 2
18 Bushing 2
19 Gear 1
20 Washer 2
21 Oil Port
22 Gear 1
23. -Gear 1
24 Shaft 2
25 Set screw. M4 2

Drive Assembly

Drive Assembly

Index

NO. Description Size Qty.
1 Brack Plate 1
2 Hex Socket Cap Screw M8X20 3
3 Belt Pulley Shaft 1
4 Washer -1
M10
5. Lock Washer 1
M10
6. Hex Nut - 1
7 Bushing 2
8 Snap Ring 1
9 Washer 1
10 Spring 5
11 Ball- 5
12 Pulley. 1
13 Pulley. 1
14 Washer 1
15 Snap Ring 12 1
16 Oil Port- 6 1
18 Collar 1
19 Motor Pulley. 1
20 Washer 1
21 Lock Washer M6 1
22 Hex Socket Cap Screw. -M6X25 1
23 Cover Plate 1
24 Hex Socket Cap Screw M5X12. 1
25 Washer M5 1
26 Hex Socket Cap Screw. M5X8 - 1
27 Cover /hinge 1
28 Hex Socket Cap Screw. M4X104
29 Washer 2
30 Hex Socket Cap Screw M6X10 2
31 Hex Socket Cap Screw M6X25 $\cdot 1$
32 Washer M6 1
33 Spring 1
34 Hex Socket Cap Screw M6X20 2
35 Clamp Block 1
36 Hex Nut - 1
37 Belt 1
38 Cog Belt - 1
39 plate 1

Tension Roller Assembly

Tension Roller Assembly

Index

NO. Description Size Qty.
1 Washer 1
3. lever bracket 1
5 Ball Bearing 2
6 Roller 1
7. Washer 1
8 Snap Ring 1
9 Snap Ring - 1
10 Washer. 1
11 Nut 2
12 Washer 1
13 Tension Spring $\cdot 1$
14 Stud Bolt - 1
15 Toggle 1
16 Pin 1
17. Sleeve - 1
18 Snap ring 1
19 SetScrew 1
20 Wave Washer 1
21 Snap Ring 1
22 Lever 1
23 Lever 1
24 Knob 1

Quadrant Assembly

Quadrant Assembly

Index

NO. Description Size Qty
1 -Bracket 1
2 .T-nut 1
3 Washer 1
4 Shaft 1
5 Bushing 1
6 Gear -127T 1
7 Gear .120T 1
8 Washer 1
9 -Oil port 6 1
10 washer M10 1
11. pin 4X14 1
12 gear 30T 1
13 Spacing Ring 1
14 washer 1
15 hex socket cap screw M6X10 1
16 lock washer -M6 1
17 hex socket cap screw M6X35 1
18 gear 28T. 1
19 gear 36T. 1
20 gear 42T 1
21 gear 45T 1
22 gear 60T 1
23 gear 80T 1

Electrical Assembly

Electrical Assembly

Index

NO． Description Size Qty．
1．． 1
2 Screw 10
3 Lock Washer 10
4. Cover 1
7． －gear ． 1
8 washer 1
11 Motor ． 1
15 卡盘护罩 － 1
16 Screw 2
17 Screw 1
18 开关 ． 1
19 Screw． 2
20 －开关固定座 1
21 －Bracket 1
22 Switch ． 1
23 Screw． ． 3
24 Pin 3X8 2

Gear Box Assembly

Gear box assembly
Index
NO. Description Size
Qty
Gear box Casting - 1
1
Shaft - 1
3. Key Bushing - 1
4. Bushing -
5. Gear $28 T$ 1
6 Gear..............................26T 1
7 Gear $24 T$ $\cdot 1$
8. Gear $23 T$ - 1
9. Gear 22T $\cdot 1$
10 Gear 20T 1
11 Gear 19T - 1
12 Gear 18T - 1
13 Gear 16T $\cdot 1$
14 Bushing 1
15 Snap Ring - 1
16 Shaft $\cdot 1$
17 Key - 1
18. Gear 1
19 Shift Arm 1
20 Shaft $\cdot 1$
21 Gear $36 T$ 1
22 Set Screw M5X10 - 1
23 Snap Ring 2
24 Ball Bearing 2
25 Plunger $\cdot 1$
26 Spring 1
28 Handle $\cdot 1$
30 Front cover -
31 Hex Socket Cap Screw........M6X16 3
32 Pin 6X22 2
33 Flange -
34 Hex Socket Cap Screw.........M6X10 3
35 Washer M10 $\cdot 1$
36 Bushing 1
37. Pin. 4×14 - 1
38 Plate - 1
39 Rivet 2
40 Hex Socket Cap Screw.........M8X20 3
41 Lock Washer 3
42 Oil cup 4
43 gland bush - 1
44. Bushing - 1
45 Handle 1
46 Screw. M6X8 2

Apron Assembly

Apron Assembly

Index

NO.DescriptionSizeQty.
1 Apron Casting 1
3. Worm 1
4. Key 1
5 Hex Socket Cap Screw M6X25 3
7. Nut 1
8 Set Screw M4X12 2
9 Steel Ball
10 Spring 1
11 Handle 1
12 Set Screw M6X6 2
13 Washer 3
14. Flat Head Screw .M6X8 3
15 Gear 12T 1
16 Spring Pin 4X30 1
17. Gear 43T. 1
18 Handle 1
19 Gear 13T 1
20 bracket 1
21 Spring 1
22 Set Screw. M4X10 1
23 Hex Socket .M6X30 2
24 Gear 43T. 1
25 Shaft 1
26 Key 4X5 1
27. Gear 41T 1
28 Ring. 14 1
29. Oil Port 2
30 Gear 17T. 1
31 Hand Wheel 1
32. Spring Pin 1
33 Screw. 1
34. Handle 1
35 Label 1

Apron Assembly(cont'd)

Apron Assembly (cont'd)

Index

NO. Description Size Qty.
37 Gear 18T 1
38. Key 4X11 1
39 Worm Gear 42T $\cdot 1$
40 -Ring 12 1
41 Half Nut - 1
42 Locking Cam 1
43. Guide 1
44 Ring 1
45 Hex Socket Cap Screw. -M4X16 4
47. . Hex Nut M5 2
48. Control Block 1
50 Hex Socket Cap Screw -M4X20 1
51 Hex Socket Cap Screw .M5X16 1
52 Screw 1
53 Thread Dial Body. 1
54 .Worm Gear 64T 1
55 Shaft 1
56 Key 3×10 1
57 Lock Washer M8 1
58 Hex Nut -M8 1
59 Dial 1
60 Screw. -M6X60 1
61 Pointer 1
62 Rivet 2X5 1
63 Hex Socket Cap Screw.............M6X60 1
64 Apron Cover 1
65 Washer M4 4
66 Pan Head Machine Screw........M4X8 4

Saddle and Cross Slide Assembly

Saddle And Cross Slide Assembly

Index

NO. Description Size Qty.
1 Saddle 1
2 Cross Slide 1
3 Gib 1
4 Nut $\cdot 1$
5 Lead Screw 1
6 Bracket - 1
7 Hex Socket Cap Screw........M5X16 2
8 Plate 1
9 Rivet 2X5 2
10 Graduated Ring 1
11 Key 3X13 1
12 Spring $\cdot 1$
13 Hand Wheel 1
14 Hex Nut 1
15 Set Screw -M8X6 1
16 Handle. 1
17 Slide Block 1
18 Bushing 1
19 Flat Head Screw M6X12 1
20 Set Screw. -M4X8 1
21 Pin 3
22 Set Screw -M4X12 3
23 Nut .M4 3
24 Slide Block 1
25 washer M6 3
26 Hex Socket cap screw .M6X16 3
27 Clip 1
28 Set screw M6X20 1
29 Nut -M6 1
30 -Hex socket cap screw............M6X25 $\cdot 1$
31. way cover 1
32 cover mount 1
33 pan head screw 1
34 cover mount 2
35 cover mount 2
36 oil port 8
37 hex socket cap screw M8X30 2
38 -hex socket cap screw M8X25 2
39 handle screw - 1
40 cover mount 1

Top Slide Assembly

Top Slide Assembly

Index

NO. Description Size Qty.
1 Longitudinal Slide 1
2 Swivel Base 1
3 Gib 1
4 lamping Ring 1
5 -Micrometer Pan 1
6 -Lead Screw Nut 1
7 -Adjusting Screw1
8 Screw 1
9 T-Screw 2
10 Pin 3
13 -Hex Socket Cap Screw M5X10 2
14 Flat Head Screw M6X12 3
15 Set Screw M4X10 3
16 -Nut M4 3
17. Nut M6 2
18 Lock Pin 3×8 1
19 Lock Pin 3X14 - 1
24 Lead Screw Mount 1
25 - Micrometer Collar 2
26 -Handwheel 1
27 Handle 2
28 Key 1
29 Feed Spring 1
30. Nut 1
31 Set Screw M8X6 1
32 .Lock Pin. 3×12 1
34 Positioning Pin 1
35 Spring 1
36 handle 1
37. Clamping Lever 1
38 .Hex Socket Cap Screw 8
39 .Tool Rest 1

Tailstock Assembly

Tailstock Assembly

Index
NO. Description Size Qty.
1 Tailstock Ram 1
2. Leadscrew. 1
3. Bushing 1
5 Hand Wheel- $\cdot 1$
6. Lever. 1
7. Clamp 1
8 Guide Pin .M5X10 1
9. -Micrometer Colla•r 1
10 -eed Spring $\cdot 1$
11 Nut 1
12 Tailstock Body 1
13 Tailstock Base 1
14 Set Screw. M8X25 2
15 Handle 1
16. Screw 1
17 Key 3X13 $\cdot 1$
18 Set Screw M8X8 1
20 Oil Port 1
21 Clamping Plate 2
22 Nut -1
23 Screw.1
24 Washer 1
25 Handle 1

Center Rest Assembly

Index

NO.	Description	Size	Qty.
	Rest Casting.		1
	Jaw.		
3.	Screw		3
4.	Lock Washer	M8	3
	Nut	M8	
	Adjusting Screw.		\ldots
	Clamping Plate		$\ldots . .1$
	Hex Cap Bolt	M8 $\times 60$	
	Washer	M8	

Travel Rest Assembly

Index			
NO.	Description	Size	Qty.
1................................ Rest Casting..			
2..................................Jaw.. 2			
4....................................Adjusting Screw.. 2			
6..................................Lock Washer.. 2			

Lathe Bed Assembly			
Index No.	Description	Size	Qty.
1.	Bed		1
	Rack		
3...	Hex Socket Cap Sc	$\cdots \mathrm{M} 4 \times 8$	
	Leadscrew.		
	Bracket	. M 8.	
6.	Oil Port.	..6	
7....	Hex Socket Cap Sc	-M6 $\times 20$	
	Nut..		
	Set Screw.	M8 $\times 6$	
10	Stud \ldots	-M8 $\times 28$	
11	Hex Nut	-M8.	
12	Set Screw.	-M6 $\times 25$	
13	Lock Washer.	.M6	
	Hex Nut		

